
iBibliography SQL Injection Solutions
Alexander Tse, Reuben Heredia, Mohammed Taher, Jordan Chiou,

Electrical and Computer Engineering, University of British Columbia

Abstract—Web applications in today’s cyber-world can be
victims of SQL injection attacks. These attacks can allow the
hacker access to confidential information stored on the
databases of the web applications. In order to test for
vulnerabilities, this paper analyzes the security of Dr.
Konstantin Beznosov’s web application, iBibliography, and
proposes two possible solutions to secure the application.
However, these solutions may not necessarily the best
solutions and this paper also examines other possible
solutions that may protect the web application more securely.

Index Terms – SQL Injection, iBibliography, Acunetix
Vulnerability scanner

I. INTRODUCTION

Structured Query Language (SQL) is a standard
programming language for database driven web
applications. SQL is used to retrieve, modify and manage
data in Relational Database Management Systems
(RDBMS) [1]. SQL based databases are also vulnerable to
SQL injection based attacks, are easy to find and are
exploited by attackers [2], [3]. There are many ways to
reduce the vulnerability of web applications by adopting
countermeasures against SQL injection.

This paper presents the solutions designed to prevent
SQL injection attacks by taking Dr. Konstantin Beznosov’s
online bibliography database, iBibliography (iBib), as a
test case. iBib is web based application based on an open
source software called WebBiblio. It provides access to
various papers, journals and other publications authored by
Dr. Konstantin Beznosov and his colleagues, and other
team members of Laboratory for Education and Research
in Secure Systems Engineering (LERSSE).

Manuscript received December 1, 2008
Tse (email: tsetsealexander@gmail.com)
R.Heredia (email:rohbit@gmail.com)
M.Taher (email:mstaher@gmail.com)
J.Chiou (email: jordanchiou@hotmail.com

A visitor to the website is able to search for
publications based on keywords, author, subject etc. iBib is
composed of SQL based database called MySQL (a
RDBMS owned by Swedish Company MySQL AB, a
subsidiary of Sun Microsystems [4]) in the backend and
PHP in the front end.

II. SQL INJECTION

SQL injection is a technique that exploits the security
of a web application that uses SQL based databases [1]. An
attacker passes malicious SQL code into strings which are
passed to the SQL server for execution. The most common
method of SQL injection is to directly insert malicious
code into user input variables (e.g. login pages, search
pages) [5]. This type of attacks allows the attackers to [6]:

1. Spoof Identity
2. Delete, add or modify data
3. Allow complete or partial disclosure of data and

subsequently procure sensitive information
4. Execute OS commands

III. IBIBLIOGRAPHY SEARCH FUNCTION AND ITS
VULNERABILITIES

iBib provides the user with two channels to interact with
the database. In addition to searching the database,
registered users are allowed to add, remove or modify
publications after they have logged into the system via the
login page. Non-registered users and visitors to the website
can only use the search page to query for publications
based on keywords, author, subject etc. Since the search
page allows any user to access the input variables, we have
analyzed the search page for SQL injection vulnerabilities.

A user can search for publications using either the
basic search on the home page or can choose to do an
advanced search. When a user enters a keyword in any of
the search pages and submits the form, the information is
taken to the biblio_search2.php page, which does all the
processing and communication with the actual database.
Once the database returns the search results to
biblio_search2.php, the returned information is displayed
to the user. The structure of the search page is shown in
Figure 1.

2

Figure 1 - Structure of the search pages in iBibliography

A simple search for a single quotation mark ‘ produces
a simple error page saying “Error counting bibliography
search results”. This is an SQL Injection attack but does
not give any confidential information away. The source of
the webpage gives us more detail about the error messages
giving us more information about the database such as data
table and field names as shown in screenshot in figure 2
below.

Figure 2 – The source code of the error message

We used a popular Web application vulnerability
scanner Acunetix to search for vulnerabilities with iBib.
This scanned served as our benchmarking tool for checking
the effectiveness of our solutions. Our initial scan of iBib
using Acunetix showed 199 SQL injection and 42 blind
SQL injection vulnerabilities. From Acunetix we were able
to identify three variables that were prone to SQL injection
errors and had highest manipulation count. The variables
are:

 searchText – the variable used when user uses the
search page

 sortBy – the variable used for biblio_search2.php
to sort results returned by the database

 page – the variable used for number of pages of
search results

Other variables that were identified were on
 login.php
 bibtex.php
 view.php
 biblio_view.php

IV. OUR DESIGN SOLUTION

As mentioned in previous section, the search page had
the three most affected variables: searchText, sortBy, and
page. Since they could contain malicious SQL code, we
implemented filters in the two pages which pass the

3

variables: search_form.php and biblio_search2.php. By
doing so, we achieve some level of defense in depth, as a
malicious user has two barriers to overcome.

A. FUNCTION ISALPHANUM IN SEARCH_FORM .PHP

The function implemented in search_form.php is
a JavaScript function called isAlphaNum(field). The
function checks the search-input field for meta-
characters and displays an alert every time the user
enters a meta-character, i.e. (‘ “ -- . / etc.).
Basically, a meta-character is any punctuation
character. This function is a mechanism to keep the
hacker frustrated every time he or she tries to enter
punctuation needed to inject the malicious query.

function isAlphaNum(field)
{

var re = /^[a-zA-Z 0-9]*$/;
if (!re.test(field.value))
{

alert("Please enter only
alphanumeric letters.");

return true;
}
else
{

return false;
}

}
By far and away the best approach is to identify

which characters you wish to permit, so the
isAlphaNum(field) function first defines the list of
allowed characters in the variable re and then
compares the list with the value of the field [7]. If this
is the case, it allows the user to continue entering their
search; however, if the user enters any meta-
characters, it will alert the user as seen in Figure 3.
The way it is implemented in the form is that it will
check the field every time a key is released using the
onkeyup field; and, it will check before submitting the
form since isAlphaNum(field) is implemented in both
the Enter and Submit Form Javascript functions. The
following HTML code excerpt displays how the
function is implemented into the form.

<input type="text" name="searchText"
size="30" maxlength="256"
onkeyup='isAlphaNum(this)'
onkeypress='return
entsub1(event,this.form)'>

Figure 3 – Users are alerted when typing meta-
character

B. FUNCTION EREGI_REPLACE IN
BIBLIO_SEARCH2.PHP

As shown in Section III, the majority of the
vulnerabilities were found in the page,
biblio_search2.php. The solution we implemented in
this page and various other pages in iBibliography
utilized the Portable Operating System Interface
(POSIX) Regular Expression (Regex) function:

eregi_replace (string $pattern ,
string $replacement , string $string
)

This function scans string for matches to pattern,
and replaces the matched text with replacement [9].

The function mainly searches for [:punct:] – i.e.
meta-characters – and removes them by replacing
them with a NULL character. If a meta-character
separates two letters or numbers, the removal will
append the two like so:

INITIAL STRING: hello’ or 1=1;--
MODIFIED STRING: hello or 11

Since a user can still bypass the search_form.php
and submit their (possibly) malicious search string, the
aforementioned code serves the primary defense
against a persistent user.

In biblio_search2.php, this function was used as
follows:

/****************SEARCHTYPE*****/
if(eregi("[a-zA-Z]+",
$_POST["searchType"]))

{
$searchType =
eregi_replace("[[:digit:][:
punct:]]+", "",
$_POST["searchType"]);

4

}
else
{
return false;
}

In the previous code, the search field searchType is
being searched for characters that are either digits or
punctuation and replacing them with a NULL
character. However, the next code excerpt cannot use
[:punct:]:

/***********SORTBY**************/
if(eregi("[a-zA-Z_]+",
$_POST["sortBy"]))

{
$sortBy =
eregi_replace("[^a-zA-
Z_]+", "",
$_POST["sortBy"]);

}
else
{
return false;
}

This code cannot use the Regex pattern [:punct:] to
search for punctuation because the variables in sortBy have
an underscore (_) such as publication_year. In this case,
we must search for any characters that are NOT alphabetic
and is not the underscore character. As such, by inserting ^
before the search pattern “a-zA-Z_”, eregi_replace() will
ignore those characters and search for all other characters.

V. RESULTS

After implementing all our solutions for
biblio_search2.php and all the other pages with SQL
injection problems, we rescanned our website using
Acunetix and found no SQL vulnerabilities associated with
the search pages. The screenshot of the scan is shown in
figure 4.

Figure 4 - Acunetix scan result after our solutions were
implemented

The screenshot shows only 36 SQL injection
vulnerabilities associated with the page bibliography2.php.
The function of this particular page is to display the search
results in a popular bibliography format. As of this
moment, we are ignoring these vulnerabilities because this
page does not do its function and as such, students in the
course EECE 496 will modify this page in future terms.
The students may have to add the security that we’ve
implemented to the variables in bibliography2.php.

VI. FUTURE SECURITY CONSIDERATIONS

Future considerations for iBib security would be to
introduce the use of parameterized statements or procedure
calls. A parameterized statement prepares a SQL statement
to bind variables to represent user input.

The advantage of this is that user input is not
embedded in the SQL statement anymore; thus an attacker
could not easily insert unintended queries at the end of the
statement.

The other option is to use stored procedures. A stored
procedure can be said as a function/ method that does
specific tasks to the database developed in Transact-SQL
language. It also uses binding variables to represent user
input, but on top of that, the SQL statement is no longer
visible in the code and instead is wrapped inside the stored
procedure. For example:

$stmt $db-> prepare(“SELECT * FROM
Table”)

would become:

$stmt $db-> prepare(“call method()”)

Furthermore, security permissions are introduced in
stored procedures by granting different access permission
to various users. However, stored procedures must be
coded carefully because SQL injection can be possible in
stored procedures. [9]

5

VII. COMMENTS

We initially investigated the use of procedure calls in
iBib but found several problems to it. We were unable to
create a procedure call property in phpMyAdmin, which is
used to administrate iBib MySQL database. A simple
query such as “SELECT * FROM BIBLIO” would
return an empty result set which should not happen.
Instead, we downloaded another tool called MySQL
Administrator to manage the database and create the
procedure call from there. We were able to create stored
procedure and execute it properly through the manager.
This procedure would also show up under phpMyAdmin;
however, when we execute it in phpMyAdmin, it still
returned empty result set. We also tried running the stored
procedure in iBib, but the result is still the same. We
further investigated this issue and noticed that the MySQL
API used to connect to the database may not support
procedure calls. Therefore, in the future, we would suggest
updating the code to use the MySQL API introduced in the
Python 5.x version.

VIII. CONCLUSION

What we have demonstrated here is the proof of
concept that SQL injection is indeed fixable. First, we used
Acunetix to scan iBib to find all SQL vulnerabilities and
found that there were 249 SQL injection related problems.
Our solution is to implement code in both the front-end and
back-end of iBibliography. In the front end on
search_form.php, the form’s field(s) would be checked
every time the user types a letter and immediately before
the user submits the form. If the field contains any meta-
characters (or punctuation), a pop-up will alert the user to
only input alphanumeric characters. If the user manages to
submit the form with meta-characters, the code in the back-
end on biblio_search2.php would replace all the meta-
characters with null characters. After implementing these
fixes, we scanned the web application again and all the
SQL injection related problems have been solved.
Therefore, we conclude that introducing character filters in
the search form is a viable solution.

REFERENCES

[1] “SQL Injections”. Wikipedia, 2008. [Online]
Available: http://en.wikipedia.org/wiki/SQL_injection

[2] W. G. Halfond, J. Viegas, and A. Orso, “A
Classification of SQL-Injection Attacks and
Countermeasures,” 2006

[3] S. Sun, T.H.Wei, S.Liu and S.Lau, “Classification of
SQL Injection Attacks,”2007. [Online]. Available:
http://courses.ece.ubc.ca/412/term_project/reports/2007-
fall/Classification_of_SQL_Injection_Attacks.pdf

[4] “MySQL”. Wikipedia, 2008. [Online] Available:
http://en.wikipedia.org/wiki/MySQL

[5] “SQL Injection”. Microsoft Development Center. SQL
Server Development Center. 25 November 2008.
http://msdn.microsoft.com/en-us/library/ms161953.aspx

[6] “SQL Injections”. Open Web Application Security
Project, 2008 [Online]. Available:
http://www.owasp.org/index.php/SQL_injection

[7] “Preventing SQL injection attacks in stored
procedures,” Software Engineering Conference, 18 - 22
April 2006 [Online]. Available:
http://www.owasp.org/index.php/SQL_injection

[8] “Eregi Replace” Php.net, 2008 [Online]. Available:
http://ca3.php.net/eregi_replace

[9] “Secure Programming for Linux and Unix HOWTO,”
DocMirror.net, 2008 [Online]. Available:
http://www.docmirror.net/en/linux/howto/programming/Se
cure-Programs-HOWTO/handle-metacharacters.html

